

SIGMA for Seamless Handover in Space

Dr. Mohammed Atiquzzaman

University of Oklahoma Norman, OK 73019-6151

atiq@ou.edu

Team Members: Pulak K Chowdhury (Univ of Oklahoma)

(Past/Present) Abu Sayeem Reaz (Univ of Oklahoma)

Swapna Gurumani (Univ of Oklahoma)

Shaojian Fu ((Univ of Oklahoma -> OPNET)

Justin Jones (Univ of Oklahoma -> Risk Metrics)

Sirendra Sivagurunathan (Univ of Oklahoma -> yousendit.com)

Liran Ma (Univ of Oklahoma -> GWU)

Yong-Jin Lee (Woosong Univ., Korea)

William Ivancic (NASA Glenn Research Center)

Harsha Sirisena (Univ of Canterbury, New Zealand)

_

Outline of this talk

- Introduction
- Handovers in satellite networks
- Classification of current handover schemes
- Drawbacks of Mobile IP
- SIGMA
- SIGMA in space (simulation)
- Results
- Future Work

- Future space communications will be based on IP technology and satellites.
- Three types of satellites
 - Ÿ Geostationary Earth Orbit (GEO)
 - Y Medium Earth Orbit (MEO)
 - Y Low Earth Orbit (LEO)
- LEO satellites will be an integral part of future space based data communications
 - Y Lower propagation delay
 - Y Lower power requirements
 - Y More efficient spectrum allocation
- LEO satellite connections encounter frequent handovers

Handovers in satellite IP networks

- Transfer of a connection to a new spotbeam or satellite is called handover.
- Link Layer handover
 - Y Spotbeam handover
 - Y Satellite handover
 - Y Link handover
- Network Layer handover
 - Y Satellite as a router
 - Y Satellite as a mobile host

A Globalstar design, with 48 active satellites in 8 planes of 6.

Spotbeam handover

- Spotbeam handover
 - Y existing connection transferred to neighboring spotbeam.
- Similar to intraswitch handover for terrestrial mobile networks.

Satellite handover

- Movement of satellite causes it to be handed over between ground stations.
- Similar to inter-switch handover in the case of terrestrial mobile network.

■ Iridium design

- Y 96 active satellites in 8 planes of 12.
- Dynamic connectivity structure due to satellite movement
 - Y requires
 rerouting ongoing
 connections to
 new Intersatellite Links
 (ISL).

Network Layer handover Case 1: satellite as a router

- Satellites act as IP routing devices.
 - Y No on-board device generating or consuming data
- Satellites allocated different IP prefix.
- FH/MH need to maintain continuous connection with Remote Computer.

Network Layer handover Case 2: satellite as a mobile host

- Satellite onboard equipments act as the endpoint of the communication.
- Ground stations are allocated with different IP prefix.
- Satellite need to maintain continuous connection with remote computer.

Spotbeam Handover Schemes: Classification

- Classification
 - Y Channel allocation strategies
 - Y Handover guarantee
- Based on channel allocation strategy
 - Y Fixed Channel Allocation (FCA)
 Schemes
 - Y Dynamic Channel Allocation (DCA)
 Schemes
 - Y Adaptive Dynamic Channel Allocation (ADCA) Schemes
- Based on handover guarantee
 - Y Guaranteed Handover (GH) Schemes
 - Y Prioritized Handover Schemes

Spotbeam Handovers: Guaranteed vs. Prioritized

- Guaranteed Handover (GH) Schemes -
 - Y Elastic Handover Scheme
 - Y TCRA (Time based Channel Reservation Algorithm) based Handover Scheme
 - Y DDBHP (Dynamic Doppler Based Handover Prioritization) Scheme

- Prioritized Handover (GH) Schemes -
 - Y Handover with Guard Channel (HG)
 - Y Handover with Queuing (HQ)
 - Y Channel Rearrangement based Handover
 - Ÿ HQ + HG Handover

Network Layer Handovers: Classification

- Classification depending on the connection transfer process-
 - Ÿ Hard Handover Schemes - Mobile IP.
 - Y Soft Handover Schemes
 - Y Signaling Diversity
 Schemes SIGMA.

SIGMA: Motivation

- Several NASA projects related to IP in space and Mobile IP
 - Y Global Precipitations Measurement (GPM)
 - Y Operating Missions as Nodes on the Internet (OMNI)
 - Y Communication and Navigation Demonstration on Shuttle (CANDOS)
 - Y NASA currently working with Cisco on developing a Mobile router
- Mobile IP may play a major role in various space related NASA projects
 - Y Advanced Aeronautics Transportation Technology (AATT)
 - Y Weather Information Communication (WINCOMM)
 - Y Small Aircraft Transportation Systems (SATS)
- University of Oklahoma and NASA jointly developed a seamless handover scheme called SIGMA
 - Y applicable to both the satellite and wireless/cellular environment.

Major Drawbacks of Base Mobile IP

- Need modification to Internet infrastructure
- High handoff latency and packet loss rate
- Inefficient routing path
- Hard to duplicate HA to various locations to increase survivability and manageability
- Scalability issues

SIGMA: Basic concepts

- Uses IP diversity for seamless handover
- Decouple location management from handover
- Almost no packet loss during handover
- Has no problem with IP security protocols
- Better Scalability and Survivability than Mobile IP
- Implementation:
 - Y Multihoming to achieve simultaneous communication with multiple access points.
 - Y Stream Control Transmission Protocol (SCTP).

Satellite Simulation

SIGMA: Satellite Simulation Parameters

- Iridium like satellite constellation
- FTP file transfer between MH (satellite) and CN
- SCTP as underlying protocol

Simulation Scenario 1: Two Ground Station Constellation

- Two ground stations NOT under same satellite footprint.
- Satellite X (MH) transfers data through satellite Y using ISL when outside the range of both ground stations.

Simulation Scenario 2: One Ground Station Constellation (OGS

- Only ONE ground station can communicate with satellite.
- Satellite X (MH)

 can increase

 connectivity with

 the ground station

 using ISL through

 satellite Y.

Simulation Scenario 3: Mixed LEO-GEO Constellation (MLGC)

- Only one ground station is capable to communicate with the satellite.
- While Satellite X (MH) is out of the range of ground station, it can send data through GEO satellite.

Results

- Time taken during SIGMA handover (t₂t₁) is very small
- Seamless handover in SIGMA is achieved using IP diversity

SIGMA: Simulation Results TGSC Scenario

Throughput

With SIGMA, no drop in Throughput

Congestion Window

- Slow start (at t₁) during SIGMA handover
- Congestion window goes to zero without SIGMA

SIGMA: Simulation Results OGSC Scenario

Throughput

- With SIGMA, network connectivity extends till 400 sec.
 - Y Without SIGMA, throughput drops to zero at 100 sec.

Congestion Window

 Slow start in Congestion window during SIGMA handover while without SIGMA it drops at 90 sec.

SIGMA: Simulation Results MLGC Scenario

Throughput

Congestion Window

- With SIGMA, after handover drop in Throughput due to change of path through GEO satellite
- Without SIGMA, throughput goes to zero.

Slow start in Congestion window during SIGMA handover while without SIGMA it drops at 90 sec.

- Seamless IP-diversity based NEtwork Mobility (SINEMO)
- Real time space testing of SIGMA using Surrey Satellite
 Technology satellite
- Vertical handoff between heterogeneous technologies

SI-NEMO: SIGMA Network in Motion

Vertical handoff with SIGMA

Project Impact

Advancement

Y Expect to move from TRL 3 to TRL 5 at end of project

Recognition

- Y News article in local <u>newspaper</u>
- Y Interview broadcast on radio station
- Y Best paper <u>award</u> from IEEE
- Y 17 journal and conference papers, 21 technical reports
- Y One IETF standards contribution

■ External Collaboration/Broader Impact

- Y Harsha Sirisena (Univ of Canterbury, New Zealand)
- Y Wes Eddy (NASA Glenn)
- Ÿ Joe Ishac (NASA Glenn)
- Y Dilip Sarkar (Univ. of Miami)

Graduate education

V 2 PhD 3 MSc (completed + in progress)

A weekly radio program about higher education in Oklahoma

Fred W. Ellersick Prize

Given annually to the best article published in a Communications Society magazine

2006

Authors

Mohammed Atiquzzaman, Shaojian Fu, William Ivancic

Paper

"Evaluation of SCTP for Space Networks"

Published

IEEE Wireless Communications, Vol. 12, No. 5, pp. 54 - 62, October 2005

- NASA and program managers for funding this project.
- Team Members

www.cs.ou.edu/~netlab

